Money market insights in China: Evidence from visual analytics approach

Authors

  • Qisheng Guo Depart of Mathematics, New York University, New York, NY 10018, USA Author
  • Xiaoming Li College of International Business, Zhejiang Yuexiu University, Shaoxing 312069, China Author
  • Qiyuan Li Faculty of Business and Economics, Hong Kong University, Pok Fu Lam, Hong Kong, China Author
  • Shenghui Cheng School of journalism and communication, Ji Nan University, Guangzhou 510632, China Author

Keywords:

visual analytics; money market; China; financial data; economic trends

Abstract

This research employs visual analytics approaches to demystify the complex dynamics of China’s money market, spanning from 1984 to 2020. Our objective is to transform intricate financial data into intuitive visual representations, thereby enhancing understanding and decision-making. We utilize advanced visual analytics techniques to analyze key aspects like money supply, deposits, loans, and foreign exchange. The study reveals significant trends and insights, contributing to a more comprehensive understanding of financial dynamics in China. These findings serve as valuable tools for economists and policymakers, guiding more informed decisions in financial governance.

References

1. Beniger JR, Robyn DL. Quantitative Graphics in Statistics: A Brief History. The American Statistician. 1978; 32(1): 1-11. doi: 10.1080/00031305.1978.10479235

2. Rothe J. Economics and Computation. Springer Berlin Heidelberg; 2016. doi: 10.1007/978-3-662-47904-9

3. Nkoro E, Uko AK. Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric methods. 2016; 5(4): 63-91.

4. Kurecic P, Kokotovic F. The Relevance of Political Stability on FDI: A VAR Analysis and ARDL Models for Selected Small, Developed, and Instability Threatened Economies. Economies. 2017; 5(3): 22. doi: 10.3390/economies5030022

5. Grinstein UMFGG, Wierse A. Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann; 2002.

6. Brodlie KW, Gallop JR, Osland CD, et al. (editors). Scientific Visualization: Techniques and Applications. Springer Science & Business Media; 2012.

7. Smits AJ. Flow Visualization: Techniques and Examples. World Scientific; 2012.

8. Munzner T. A Nested Model for Visualization Design and Validation. IEEE Transactions on Visualization and Computer Graphics. 2009; 15(6): 921-928. doi: 10.1109/tvcg.2009.111

9. Thomas JJ, Cook KA. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society Press; 2005.

10. Cheng S, Mueller K. The Data Context Map: Fusing Data and Attributes into a Unified Display. IEEE Transactions on Visualization and Computer Graphics. 2016; 22(1): 121-130. doi: 10.1109/tvcg.2015.2467552

11. Huang T, Cheng S, Li S, Zhang Z. High-dimensional Clustering onto Hamiltonian Cycle. ICML. 2023; 13791-13813.

12. Ko S, Cho I, Afzal S, et al. A Survey on Visual Analysis Approaches for Financial Data. Computer Graphics Forum. 2016; 35(3): 599-617. doi: 10.1111/cgf.12931

13. Ziegler H, Jenny M, Gruse T, et al. Visual market sector analysis for financial time series data. In: Proceedings of the 2010 IEEE Symposium on Visual Analytics Science and Technology; 25-26 October 2010; Salt Lake City, UT, USA. pp. 83-90. doi: 10.1109/vast.2010.5652530

14. Leite RA, Gschwandtner T, Miksch S, et al. EVA: Visual Analytics to Identify Fraudulent Events. IEEE Transactions on Visualization and Computer Graphics. 2018; 24(1): 330-339. doi: 10.1109/tvcg.2017.2744758

15. Nadini M, Alessandretti L, Di Giacinto F, et al. Mapping the NFT revolution: market trends, trade networks, and visual features. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-00053-8

16. Guo R, Cheng L, Li J, et al. A Survey of Learning Causality with Data. ACM Computing Surveys. 2020; 53(4): 1-37. doi: 10.1145/3397269

Downloads

Published

2024-08-16

Issue

Section

Article

How to Cite

Money market insights in China: Evidence from visual analytics approach. (2024). Forum for Economic and Financial Studies, 2(3). https://journal.arsl-pub.com/index.php/FEFS/article/view/21